Recent post
Showing posts with label IPA kelas IX. Show all posts
Sistem Tata Surya
Cobalah kamu menengadah ke angkasa pada malam hari. Benda-benda apa saja yang terlihat olehmu? Tentu saja kamu akan melihat ribuan benda langit. Benda-benda langit yang berkedip-kedip disebut bintang, tetapi ada juga yang tidak berkedap-kedip yang disebut planet.
Di abad modern ini, banyak para ilmuan sering mengadakan penelitian, seperti penelitian di bidang astronomi. Dengan penelitian-penelitian di bidang astronomi, kita mampu mengenal tentang tata surya.
Tata surya adalah susunan benda-benda langit yang terdiri atas matahari sebagai pusatnya dan planet-planet, meteorid, komet, serta asteroid yang mengelilingi matahari. Susunan tata surya terdiri atas matahari, delapan planet, satelit-satelit pengiring planet, komet, asteroid, dan meteorid. Peredaran benda langit yang berupa planet dan benda langit lainnya dalam mengelilingi matahari disebut revolusi. Sebagian besar garis edarnya (orbit) berbentuk elips. Bidang edar planet-planet mengelilingi matahari disebut bidang edar, sedangkan bidang edar planet bumi disebut bidang ekliptika. Selain berevolusi benda-benda langit juga berputar pada porosnya yang disebut rotasi, sedangkan waktu untuk sekali berotasi disebut kala rotasi.
Matahari
Matahari merupakan pusat tata surya yang berupa bola gas yang bercahaya. Matahari merupakan salah satu bintang yang menghiasi galaksi Bima Sakti. Suhu permukaan matahari 6.000 derajat celsius yang dipancarkan ke luar angkasa hingga sampai ke permukaan bumi, sedangkan suhu inti sebesar 15-20 juta derajat celsius.
Planet
Sebelum bulan Agustus 2006, para astronom masih berpendapat ada sembilan planet dalam tata surya, yaitu Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, Uranus, Neptunus, dan Pluto. Secara umum planet-planet bergerak dari barat ke timur, kecuali Venus dan Uranus. Setiap planet mempunyai kala revolusi dan kala rotasi yang berbeda-beda. Planet tidak bisa memancarkan cahaya sendiri tetapi hanya memantulkan cahaya yang diterima dari matahari. Pada tanggal 24 Agustus 2006 Majelis Umum Uni Astronomi Internasional (IAV) di Praha, Ceko, menyatakan bahwa Pluto bukan lagi sebagai planet. Bahkan pada tanggal 7 September 2006 nama Pluto diganti dengan deretan enam angka, yaitu 134340. Dengan demikian, sejak tanggal 24 Agustus 2006 di tata surya terdapat 8 planet. Ukuran antara planet satu dengan yang lain berbeda. Begitu pula jaraknya terhadap matahari. Planet yang terdekat terhadap matahari mempunyai kala revolusi terkecil.
Komet
Komet berasal dari bahasa Yunani, yaitu Kometes yang artinya berambut panjang. Komet menurut istilah bahasa adalah benda langit yang mengelilingi matahari dengan orbit yang sangat lonjong. Komet terdiri atas es yang sangat padat dan orbitnya lebih lonjong daripada orbit planet. Komet menyemburkan gas bercahaya yang dapat terlihat dari bumi. Bagian-bagian komet, yaitu: 1) inti komet, yaitu bagian komet yang kecil tetapi padat tersusun dari debu dan gas. 2) koma, yaitu daerah kabut di sekeliling inti. 3) ekor komet, yaitu bagian yang memanjang dan panjangnya mampu mencapai satu satuan astronomi (1SA = jarak antara bumi dan matahari). Arah ekor komet selalu menjauhi matahari. Hal itu dikarenakan ekor komet terdorong oleh radiasi dan angin matahari.132Kebanyakan komet tidak dapat dilihat dengan mata telanjang, tetapi harus dengan menggunakan teleskop. Komet yang terkenal adalah komet Halley yang ditemukan oleh Edmunt Halley. Komet itu muncul setiap 76 tahun sekali. Komet sering disebut sebagai bintang berekor.
Asteroid
Asteroid adalah benda langit yang mirip dengan planet-planet, yang terletak di antara orbit Mars dan Yupiter. Asteroid disebut juga planetoid atau planet kerdil. Asteroid yang terbesar dan yang pertama adalah Ceres yang ditemukan oleh Giussepe Piazzi (astronom Italia). Icarus adalah salah satu asteroid yang pernah mendekati bumi dengan orbit yang berbentuk lonjong.
Meteoroid
Meteoroid adalah batuan-batuan kecil yang sangat banyak dan melayang-layang di angkasa luar. Batuan-batuan ini banyak mengandung unsur besi dan nikel. Batuan-batuan ini masuk ke atmosfer bumi karena pengaruh gravitasi bumi. Gesekan dengan atmosfer bumi menghasilkan panas yang membakar habis batuan-batuan itu sebelum sempat mencapai permukaan bumi. Batuan-batuan atau benda langit yang bergesekan dengan atmosfer bumi dan habis terbakar sebelum sampai di permukaan bumi disebut meteor. Adapun batuan-batuan yang tidak habis terbakar dan sampai di permukaan bumi disebut meteorit. Ada sebuah meteorit yang jatuh di Arizona USA dengan ukuran yang sangat besar hingga membentuk sebuah kawah. Kawah tersebut dinamakan Kawah Barringer. Contoh meteorit dapat dilihat di Museum Geologi, Bandung.
Bulan
Bulan merupakan benda langit yang mengitari bumi. Karena bumi mengitari matahari, maka bulan juga mengitari matahari bersamaan dengan bumi. Selain itu, bulan juga berputar pada porosnya sendiri. Dengan demikian bulan mempunyai tiga gerakan sekaligus. Benda-benda langit yang berada di dalam tata surya tersusun secara rapi. Selama bergerak benda-benda itu tidak saling bertabrakan. Hal itu terjadi karena adanya gaya gravitasi pada masing-masing benda langit. Dengan demikian, dapat dikatakan bahwa yang menyebabkan gerakan benda-benda langit teratur adalah gaya gravitasi.
Karakteristik Matahari
Orang-orang zaman dahulu untuk dapat mencari dan menentukan arah dengan melihat rasi bintang di langit. Tahukah kamu bintang apakah yang paling dekat dengan bumi?
Benda langit di jagat raya ini jumlahnya banyak sekali. Ada yang dapat memancarkan cahaya sendiri ada juga yang tidak dapat memancarkan cahaya sendiri, tetapi hanya memantulkan cahaya dari benda lain. Bintang adalah benda langit yang memancarkan cahaya sendiri (sumber cahaya). Matahari dan bintang mempunyai persamaan, yaitu dapat memancarkan cahaya sendiri. Matahari merupakan sebuah bintang yang tampak sangat besar karena letaknya paling dekat dengan bumi. Matahari memancarkan energi yang sangat besar dalam bentuk gelombang elektromagnet. Gelombang elektromagnet tersebut adalah gelombang cahaya tampak, sinar X, sinar gamma, sinar ultraviolet, sinar inframerah, dan gelombang mikro.
Sumber energi matahari berasal dari reaksi fusi yang terjadi di dalam inti matahari. Reaksi fusi ini merupakan penggabungan atom-atom hidrogen menjadi helium. Reaksi fusi tersebut akan menghasilkan energi yang sangat besar. Matahari tersusun dari berbagai macam gas antara lain hidrogen (76%), helium (22%), oksigen dan gas lain (2%).
Lapisan-Lapisan Matahari
Matahari adalah bola gas pijar yang sangat panas. Matahari terdiri atas empat lapisan, yaitu inti matahari, fotosfer, kromosfer, dan korona.
a. Inti Matahari. Bagian dalam dari matahari, yaitu inti matahari. Pada bagian ini terjadi reaksi fusi sebagai sumber energi matahari. Suhu pada inti matahari dapat mencapai 15000000 derajat celcius. Energi yang dihasilkan dari reaksi fusi akan dirambatkan sampai pada lapisan yang paling luar, yang kemudian akan terealisasi ke angkasa luar.
b. Fotosfer. Fotosfer adalah bagian permukaan matahari. Lapisan ini mengeluarkan cahaya sehingga mampu memberikan penerangan sehari-hari. Suhu pada lapisan ini mampu mencapai lebih kurang 16.000 derajat C dan mempunyai ketebalan sekitar 500 km.
c. Kromosfer. Kromosfer adalah lapisan di atas fotosfer dan bertindak sebagai atmosfer matahari. Kromosfer mempunyai ketebalan 16.000 km dan suhunya mencapai lebih kurang 9.800 derajat C. Kromosfer terlihat berbentuk gelang merah yang mengelilingi bulan pada waktu terjadi gerhana matahari total.
d. Korona. Korona adalah lapisan luar atmosfer matahari. Suhu korona mampu mencapai lebih kurang 1.000.000 derajat C. Warnanya keabu-abuan yang dihasilkan dari adanya ionisasi pada atom-atom akibat suhunya yang sangat tinggi. Korona tampak ketika terjadi gerhana matahari total, karena pada saat itu hampir seluruh cahaya matahari tertutup oleh bulan. Bentuk korona, seperti mahkota dengan warna keabu-abuan.
Gangguan-Gangguan pada Matahari
Gejala-gejala aktif pada matahari atau aktivitas matahari sering menimbulkan gangguan-gangguan pada matahari. Gangguan-gangguan tersebut, yaitu sebagai berikut.
a. Gumpalan-Gumpalan pada Fotosfer (Granulasi). Gumpalan-gumpalan ini timbul karena rambatan gas panas dari inti matahari ke permukaan. Akibatnya, permukaan matahari tidak rata melainkan bergumpal-gumpal.
b. Bintik Matahari (Sun Spot). Bintik matahari merupakan daerah tempat munculnya medan magnet yang sangat kuat. Bintik-bintik ini bentuknya lubang-lubang di permukaan matahari di mana gas panas menyembur dari dalam inti matahari, sehingga dapat mengganggu telekomunikasi gelombang radio di permukaan bumi.
c. Lidah Api Matahari. Lidah api matahari merupakan hamburan gas dari tepi kromosfer matahari. Lidah api dapat mencapai ketinggian 10.000 km. Lidah api sering disebut prominensa atau protuberan. Lidah api terdiri atas massa proton dan elektron atom hidrogen yang bergerak dengan kecepatan tinggi. Massa partikel ini dapat mencapai permukaan bumi. Sebelum masuk ke bumi, pancaran partikel ini tertahan oleh medan magnet bumi (sabuk Van Allen), sehingga kecepatan partikel ini menurun dan bergerak menuju kutub, kemudian lama-kelamaan partikel berpijar yang disebut aurora. Hamburan partikel ini mengganggu sistem komunikasi gelombang radio. Aurora di belahan bumi selatan disebut Aurora Australis, sedangkan di belahan bumi utara disebut Aurora Borealis.
d. Letupan (Flare). Flare adalah letupan-letupan gas di atas permukaan matahari. Flare dapat menyebabkan gangguan sistem komunikasi radio, karena letusan gas tersebut terdiri atas partikel-partikel gas bermuatan listrik.
Karakteristik Bumi
Merkurius
Planet merkurius adalah planet yang terdekat dengan matahari pada sistem tata surya, planet ini berukuran kecil dan hampir tidak mempunyai atmosfer, akibatnya langit kelihatan gelap seperti di angkasa lepas. Permukaannya dipenuhi kawah (tampak berlubang-lubang) seperti permukaan sebuah bulan. Pada siang hari, suhu di permukaan merkurius sangat panas, mencapai 400oC dan sebaliknya suhu pada malam hari sangat dingin hingga -200oC. Periode planet ini kira-kira 88 hari, sedangkan periode rotasinya 59 hari. Diameter planet ini adalah 4.880 km, dengan jarak rata-rata Merkurius ke matahari 58 juta km.
Venus
Planet
ini tampak sangat mengkilap karena memiliki atmosfer yang tebal seperti
awan putih yang menyelubungi permukaan venus. Awan ini terjadi akibat
dari pembakaran asam sulfat panas. Atmosfer Venus mengandung 97%
karbondioksida (CO2) dan 3% nitrogen, sehingga hampir tidak mungkin
terdapat kehidupan. Suhu siang hari dapat mencapai 500oC. Venus sering
disebut bintang pagi atau bintang senja karena terlihat berkilauan di
timur pada saat terbit matahari dan saat tenggelam di ufuk barat. Arah
rotasi Venus berlawanan dengan arah rotasi planet-planet lain. Selain
itu, jangka waktu rotasi Venus lebih lama daripada jangka waktu
revolusinya dalam mengelilingi matahari. Kala revolusi planet venus
adalah 224,7 hari, sedangkan kala rotasinya 244 hari dengan diameternya
12.100 km.
Bumi
Bumi merupakan planet ketiga berdasarkan jaraknya dari matahari dalam tata surya. Diperkirakan usianya mencapai 4,6 milyar tahun. Jarak antara Bumi dengan matahari adalah 149.6 juta kilometer atau 1 AU (ing: astronomical unit). Bumi mempunyai lapisan udara (atmosfer) dan medan magnet yang disebut (magnetosfer) yang melindung permukaan Bumi dari angin matahari, sinar ultra ungu, dan radiasi dari luar angkasa. Lapisan udara ini menyelimuti bumi hingga ketinggian sekitar 700 kilometer. Lapisan udara ini dibagi menjadi Troposfer, Stratosfer, Mesosfer, Termosfer, dan Eksosfer. Gravitasi Bumi diukur sebagai 10 N kg-1 dijadikan unit ukuran gravitasi planet lain. Bumi mempunyai 1 satelit alami yaitu Bulan. 70,8% permukaan bumi diseliputi air. Udara Bumi terdiri dari 78% nitrogen, 21% oksigen, dan 1% uap air, karbondioksida, dan gas lain. Bumi mempunyai diameter sepanjang 12.756 kilometer.
Mars
Planet mars mempunyai permukaan berbatu-batu yang terlihat merah yang disebabkan oleh kandungan oksida besi didalamnya, sedangkan warna lainnya yang berubah ditimbulkan oleh adanya angin yang mengangkat debu dari permukaannya.Suhu permukaannya lebih dingin daripada suhu permukaan bumi karena letaknya yang lebih jauh dari matahari. Jarak mars ke matahari kira-kira 227,9 km. Mars mempunyai kutub es yang diberi nama Olympus dengan ketinggian 23.000 m dari permukaan tanah sekitarnya. Planet ini mempunyai 2 satelit, yaitu Phobos dan Deimos. Planet ini mengorbit selama 686 hari dalam mengelilingi matahari. Dalam mitologi Yunani, Mars identik dengan dewa perang, yaitu Aries, putra dari Zeus dan Hera
Jupiter
Planet jupiter adalah planet yang terbesar dalam tata surya.Diameternya 13.000 km, dengan jarak rata-rata ke matahari 778,3 juta km. Jupiter memiliki periode rotasi selama 10 jam dan periode revolusi adalah 11,86 tahun. Awan yang berputar pada jupiter bergerak dengan kelajuan 200 mil per jam. Atmosfer jupiter terdiri dari hidrogen (H), helium (He),metana (CH4), dan amonia (NH3). Suhu di permukaan planet ini berkisar dari -140oC sampai dengan 21oC. Seperti planet lain, Jupiter tersusun atas unsur besi dan unsur berat lainnya. Jupiter memiliki 63 satelit, di antaranya Io, Europa, Ganymede, Callisto (Galilean moons)
Saturnus
Saturnus
merupakan planet yang mudah dibedakan dengan planet lainnya, karena
planet ini mempunyai cincin. Cincin tersebut adalah bongkahan-bongkahan
es meteorit dengan lebar 402.000 km dan tebal 15 km dengan Suhu di
permukaan Saturnus adalah -170 oC. Saturnus berevolusi dalam waktu 29,46
tahun. Setiap 378 hari, Bumi, Saturnus, dan Matahari akan berada dalam
satu garis lurus. Selain berrevolusi, Saturnus juga berrotasi dalam
waktu yang sangat singkat, yaitu 10 jam 14 menit. Saturnus memiliki
kerapatan yang rendah karena sebagian besar zat penyusunnya berupa gas
dan cairan. Inti Saturnus diperkirakan terdiri dari batuan padat.
Atmosfer Saturnus tersusun atas gas amoniak dan metana. Hal ini tentu
tidak memungkinkan adanya kehidupan di Saturnus Saturnus diketahui
memiliki 56 buah satelit alami. Tujuh diantaranya cukup masif untuk
dapat runtuh berbentuk bola di bawah gaya gravitasinya sendiri. Mereka
adalah Mimas, Enceladus, Tethys, Dione, Rhea, Titan (Satelit terbesar
dengan ukuran lebih besar dari planet Merkurius), dan Iapetus.
Uranus
Planet Uranus ditemukan oleh Wiliam Herschel pada tahun 1781, planet ini terselubung kabut tebal terutama terdiri dari gas metan. Garis tengahnya kira-kira empat kali garis tengah bumi. Uranus merupakan planet pemantul cahaya matahari yang baik. Oleh karena itu kita dapat mudah melihat planet itu berwarna biru. Keunikan planet ini adalah poros putaranya hampir berimpit dengan bidang edarnya. Jarak rata-rata ke matahari 2.369 juta km. Kala revolusi planet uranus adalah 84 tahun, dengan kala rotasinya 17,25 jam Uranus memiliki diameter mencapai 51.118 km dan memiliki massa 14,54 massa Bumi. Bentuk planet ini mirip dengan Bulan dengan permukaan berwarna hijau dan biru. Uranus memiliki 18 satelit alami, diantaranya Ariel, Umbriel, Miranda, Titania, dan Oberon.
Neptunus
Neptunus
merupakan saudara kembar dari Uranus yang ditemukan pada Agustus 1846.
Neptunus memiliki jarak rata-rata dengan Matahari sebesar 4.450 juta km.
Pada planet ini tidak terdapat kehidupan dengan suhu permukaan planet
-120 oC. Neptunus memiliki diameter mencapai 49.530 km dan memiliki
massa 17,2 massa Bumi. Periode rotasi planet ini adaah 16,1 jam.,
sedangkan periode revolusi adalah 164,8 tahun. Bentuk planet ini mirip
dengan Bulan dengan permukaan terdapat lapisan tipis silikat. Komposisi
penyusun planet ini adalah besi dan unsur berat lainnya. Planet Neptunus
memiliki 8 buah satelit, di antaranya Triton, Proteus, Nereid, dan
Larissa.
Lapisan Kerak Bumi (Litosfer)
Litosfer adalah lapisan terluar kulit bumi (kerak bumi), memiliki ketebalan ± 1.200 km dan terdiri atas lapisan Silisium dan Aluminium (SiAl) serta Silisium dan Magne-sium (SiMg).
Batuan Pembentuk Litosfer
1. Batuan beku: terbentuk karena membekunya magma yang keluar akibat proses pendinginan.
Batuan beku dalam (abisis, plutonis): pembekuan magma di dalam kulit bumi. Contoh: batu granit, diorit, gabro.
Batuan beku korok (hypoabisis): pembekuan magma di celah-celah/retakan bumi. Contoh: batu granit porfirit, seinit porfirit.
Batuan beku luar (effusif): pembekuan magma setelah mencapai permukaan. Contoh: andesit, basalt, riolit, obsidian.
2. Batuan sedimen: terbentuk karena terjadinya pelapukan batuan yang kemudian terendapkan hingga membentuk batuan.
a) Berdasarkan proses terjadinya
Sedimen klastik/mekanik: diangkut dari tempat asal kemudian diendapkan tanpa mengalami proses kimiawi. Contoh: batu breksi (kerikil dengan sudut tajam), konglomerat (kerikil dengan sudut tumpul), pasir.
Sedimen kimiawi: endapan hasil pelarutan kimiawi. Contoh: gips, batu garam.
Sedimen organik: dipengaruhi unsur organik. Contoh: batu bara, batu gamping.
b) Berdasarkan tenaga pengangkutnya Sedimen aquatis: diendapkan oleh air. Contoh: batu pasir, lumpur.
Sedimen aeolis: diendapkan oleh angin. Contoh: tanah loss, pasir.
Sedimen glasial: tenaga gletser., Contoh: morena, tanah lim.
Sedimen marine: oleh air laut., Contoh: delta.
c) Berdasarkan tempat diendapkannya
Sedimen teritis: di darat, contoh: tanah loss, batu tuff, breksi.
Sedimen fluvial: di dasar sungai, contoh: pasir.
Sedimen marine: di dasar laut, contoh: batu karang, batu garam.
Sedimen palludal/limnis: di rawa/danau, contoh: gambut, tanah lim.
Sedimen glasial: di daerah es, contoh: batu morena.
Sedimen marginal: di pantai.
3. Batuan metamorf/malihan: batuan beku endapan yang telah berubah sifatnya, pengaruh suhu tinggi, tekanan, dan waktu.
Batuan metamorf kontak: adanya kontak atau pengaruh suhu tinggi atau dekat dengan magma. Contoh: batu pualam (marmer) dari batu kapur.
Batuan metamorf dinamo: adanya tekanan lapisan di atasnya dalam waktu lama. Contoh: batu sabak dari tanah liat antrasit.
Batuan metamorf pneumatolistis: pengaruh suhu tinggi, tekanan di sekitarnya dan waktu yang lama serta masuknya.
Lapisan Udara Bumi (Atmosfer)
Atmosfer yaitu lapisan udara yang menyelimuti bumi. Lapisan udara tersebut ikut berotasi dan berevolusi.
Bagian-bagian udara
Udara tersusun atas campuran gas, debu dan uap air. Penyusun udara antara lain gas Nitrogen (N2) sebanyak 78 % yang Sangat penting untuk tumbuh-tumbuhan sebagai penyubur tanah, gas Oksigen (O2) sebanyak 21 % Sangat penting untuk pembakaran makanan dalam tubuh melalui proses pernapasan, dan gas-gas mulia lainnya (Argon, karbon dioksida, kripton, neon, hidrogen, helium dan lain sebagainya) 2. Lapisan-lapisan atmosfer Semakin tinggi suatu tempat dari permukaan bumi, lapisan atmosfer semakin tipis. Lapisan atmosfer dapat dibagi menjadi:
Troposfer merupakan lapisan udara yang paling dekat dengan permukaan bumi, yang mempunyai ketinggian sampai 10 km. Hampir 80% massa seluruh gas penyusun atmosfer berada pada lapisan ini. Pada lapisan ini terjadi gejala cuaca, seperti suhu, tekanan udara, dan angin.
Stratosfer , berada di atas lapisan troposfer dengan ketinggian antara 10 km sampai 50 km dari permukaan bumi. Pada lapisan ini terdapat lapisan ozon yang mempunyai daya serap yang kuat terhadap radiasi sinar ultraviolet dari matahari.
Mesosfer, berada pada ketinggian 50 km sampai 80 km dari permukaan bumi. Pada lapisan ini terdapat lapisan yang berfungsi melindungi bumi dari meteor, dengan cara mmbakar setiap meteor yang masuk ke atmosfer bumi.
Termosfer, berada pada ketinggian 80 km sampai 480 km dari permukaan bumi. Pada lapisan terdapat lapisan ionosfer pada ketinggian 80 km sampai 360 km. Pada ionosfer terjadi ionisasi yang memantulkan partikel ion. Partikel ini berfungsi sebagai pemantul gelombang suara dan cahaya dari bumi, sehingga digunakan untuk pemancar gelombang radio.
Eksosfer, lapisan terakhir penyusun atmosfer bumi, yang paling luar. Pada lapisan ini hampir tidak ada tekanan udara. Akibatnya molekul-molekul gas pada lapisan ini dapat meninggalkan atmosfer menuju angkasa luar.
Pemanasan Udara oleh Matahari
Sinar matahari yang sampai ke atmosfer, 36% dipantulkan kembali ke angkasa, 19% diserap dan 45% sampai ke permukaaan bumi. Panas yang sampai ke permukaan bumi inilah yang memanasi daratan, lautan, tumbuh-tumbuhan dan hewan. Panas yang sampai ke bumi sebagian besar diserap bumi dan sebagian kecil dipantulkan. Factor yang menentukan banyaknya sinar matahari yang diserap antara lain:
Sifat muka bumi
Kemiringan sinar matahari
Lama penyinaran
Keadaan awan
Sinar yang diserap oleh bumi, hampir semuanya dipancarkan kembali sehingga menyebabkan suhu dipermukaan bumi stabil.
Cuaca
Cuaca yaitu keadaan lapisan udara troposfer di suatu tempat yang tidak luas pada saat tertentu dan dalam kurun waktu tertentu. Adapun cuaca rata-rata pada suatu wilayah yang luas dan dalam waktu yang lama di sebut iklim. Unsur-unsur yang mempengaruhi cuaca:
suhu udara
tekanan udara
kelembapan udara
arah dan kecepatan angin
awan
curah hujan
Pemanasan Global
Pemanasan global merupakan gejala kenaikan suhu di muka bumi. Hal ini dikarenakan jumlah karbon dioksida makin naik seiring dengan kemajuan teknologi antara lain pemakaian bahan bakar fosil pada mesin-mesin industri dan makin berkurangnya populasi tumbuhan. Peningkatan kandungan karbon dioksida dapat menghasulkan efek rumah kaca yang dapat menyebabkan suhu atmosfer bumi semakin naik dan akhirnya akan mengakibatkan es di kutub mencair. Pemanasan global juga dapat disebabkan oleh penggunaan freon (CFC) yang dapat mengikis lapisan ozon.
Generator
Jadi, generator AC dapat
diubah menjadi generator DC dengan cara mengganti cincin ganda
dengan sebuah komutator. Sebuah generator AC kumparan berputar di
antara kutub- kutub yang tak sejenis dari dua magnet yang
saling berhadapan. Kedua kutub magnet akan menimbulkan medan
magnet. Kedua ujung kumparan dihubungkan dengan sikat karbon
yang terdapat pada setiap cincin. Kumparan merupakan bagian
generator yang berputar (bergerak) disebut rotor.
Magnet tetap
merupakan bagian generator yang tidak bergerak disebut
stator. Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan
arah medan magnet (membentuk sudut 0 derajat), belum terjadi arus
listrik dan tidak terjadi GGL induksi (perhatikan Gambar 12.2).
Pada saat kumparan berputar perlahan-lahan, arus dan GGL
beranjak naik sampai kumparan membentuk sudut 90 derajat. Saat itu
posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini
kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya,
putaran kumparan terus berputar, arus dan GGL makin berkurang.
Ketika
kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan
arah medan magnet, maka Putaran kumparan berikutnya arus dan
tegangan mulai naik lagi dengan arah yang berlawanan. Pada saat
membentuk sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus
dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi
menunjukkan nilai maksimum lagi, namun arahnya berbeda. Putaran
kumparan selanjutnya, arus dan tegangan turun perlahanlahan
hingga mencapai nol dan kumparan kembali ke posisi semula
hingga memb entuk sudut 360 derajat.
Dinamo
Dinamo
dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus
bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu
memutar kumparan di dalam medan magnet atau memutar magnet di dalam
kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang
tidak bergerak disebut stator.
Perbedaan
antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan.
Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua
yang disebut cincin belah (komutator). Cincin ini memungkinkan arus
listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah
walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun,
pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin).
Alat
pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo
sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda.
Jika roda berputar,kumparan
atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada
ujung-ujung kumparan dan arus listrik mengalir. Makin cepat gerakan roda
sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL
induksi dan arus listrik yang dihasilkan. Jika dihubungkan dengan
lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat
diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang
kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi
lunak di dalam kumparan.
Transformator
Di rumah mungkin kamu pernah dihadapkan
persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang
memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang
disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan
tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt.
Kenyataannya sampai di rumah tegangan listrik tinggal 220 V.
Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk
menaikkan atau menurunkan tegangan AC disebut transformator (trafo).
Trafo memiliki dua terminal, yaitu terminal input dan terminal output.
Terminal input terdapat pada kumparan primer. Terminal output terdapat
pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan
dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada
terminal output. Prinsip kerja transformator menerapkan peristiwa
induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti
besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena
arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet.
Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder.
Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis
gaya magnet. Hal itulah yang menimbulkan GGL induksi pada kumparan
sekunder. Adapun, arus induksi yang dihasilkan adalah arus AC yang
besarnya sesuai dengan jumlah lilitan sekunder.
Bagian
utama transformator ada tiga, yaitu inti besi yang berlapis-lapis,
kumparan primer, dan kumparan sekunder. Kumparan primer yang dihubungkan
dengan PLN sebagai tegangan masukan (input) yang akan dinaikkan atau
diturunkan. Kumparan sekunder dihubungkan dengan beban sebagai tegangan
keluaran (output).
Macam-Macam Transformator
Apabila tegangan terminal output lebih
besar daripada tegangan yang diubah, trafo yang digunakan berfungsi
sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output
lebih kecil daripada tegangan yang diubah, trafo yang digunakan
berfungsi sebagai penurun tegangan. Dengan demikian, transformator
(trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
Trafo step up adalah transformator yang berfungsi untuk menaikkan tegangan AC. Ciri-ciri:
- Jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
- Tegangan primer lebih kecil daripada tegangan sekunder,
- Kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan tegangan AC. Ciri-ciri:
- Jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,
- Tegangan primer lebih besar daripada tegangan sekunder,
- Kuat arus primer lebih kecil daripada kuat arus sekunder.
KEMAGNETAN BAHAN
Kita dapat menggolongkan benda berdasarkan sifatnya. Pernahkah
kamu melihat benda yang dapat menarik benda logam lain? Kemampuan suatu
benda menarik benda lain yang berada di dekatnya disebut kemagnetan. Berdasarkan kemampuan benda menarik benda lain dibedakan menjadi dua, yaitu benda magnet dan benda bukan magnet.
Namun, tidak semua benda yang berada di dekat magnet
dapat ditarik. Benda yang dapat ditarik magnet disebut benda magnetik.
Benda yang tidak dapat ditarik magnet disebut benda nonmagnetik.
Benda yang dapat ditarik magnet ada yang dapat ditarik kuat, dan ada
yang ditarik secara lemah. Oleh karena itu, benda
dikelompokkan menjadi tiga, yaitu benda feromagnetik, benda
paramagnetik, dan benda diamagnetik. Benda yang ditarik kuat oleh magnet
disebut benda feromagnetik. Contohnya besi, baja, nikel, dan
kobalt. Benda yang ditarik lemah oleh magnet disebut benda paramagnetik.
Contohnya platina, tembaga, dan garam. Benda yang ditolak oleh magnet
dengan lemah disebut benda diamagnetik. Contohnya timah, aluminium,
emas, dan bismuth.
Benda-benda magnetik yang bukan magnet dapat dijadikan magnet. Benda
itu ada yang mudah dan ada yang sulit dijadikan magnet. Baja
sulit untuk dibuat magnet, tetapi setelah menjadi magnet sifat
kemagnetannya tidak mudah hilang. Oleh karena itu, baja digunakan untuk
membuat magnet tetap (magnet permanen). Besi mudah untuk dibuat magnet,
tetapi jika setelah menjadi magnet sifat kemagnetannya mudah
hilang. Oleh karena itu, besi digunakan untuk membuat magnet
sementara. Setiap benda magnetik pada dasarnya terdiri magnet-magnet
kecil yang disebut magnet elementer. Cobalah mengingat kembali teori partikel zat di kelas VII. rinsip membuat magnet adalah mengubah susunan magnet elementer yang tidak beraturan menjadi searah dan teratur. Ada tiga cara membuat magnet, yaitu menggosok, induksi, dan arus listrik.
1. Membuat Magnet dengan Cara Menggosok
Besi yang semula tidak bersifat magnet, dapat dijadikan magnet.
Caranya besi digosok dengan salah satu ujung magnet tetap. Arah gosokan
dibuat searah agar magnet elementer yang terdapat pada besi letaknya
menjadi teratur dan mengarah ke satu arah. Besi dan baja dapat dijadikan magnet dengan cara induksi magnet. Besi dan baja diletakkan di dekat magnet tetap. Magnet elementer yang terdapat pada besi dan baja akan terpengaruh atau terinduksi magnet tetap yang menyebabkan letaknya teratur dan mengarah ke satu arah. Besi atau baja akan menjadi magnet sehingga dapat menarik serbuk besi yang berada di dekatnya.
Ujung besi yang berdekatan dengan kutub magnet batang, akan terbentuk kutub yang selalu berlawanan dengan kutub magnet penginduksi. Apabila kutub utara magnet batang berdekatan dengan ujung A besi, maka ujung A besi menjadi kutub selatan dan ujung B besi menjadi kutub utara atau sebaliknya.
Selain dengan cara induksi, besi dan baja dapat dijadikan magnet dengan arus listrik. Besi dan baja dililiti kawat yang dihu- bungkan dengan baterai. Magnet elementer yang terdapat pada besi dan baja akan terpengaruh aliran arus searah (DC) yang dihasilkan baterai. Hal ini menyebabkan magnet elementer letaknya teratur dan mengarah ke satu arah. Besi atau baja akan menjadi magnet dan dapat menarik serbuk besi yang berada di dekatnya. Magnet yang demikian disebut magnet listrik atau elektromagnet.
Besi yang berujung A dan B dililiti kawat berarus listrik. Kutub magnet
yang terbentuk bergantung pada arah arus ujung kumparan. Jika arah
arus berlawanan jarum jam maka ujung besi tersebut menjadi kutub
utara. Sebaliknya, jika arah arus searah putaran jarum jam maka ujung
besi tersebut terbentuk kutub selatan. Dengan demikian, ujung A
kutub utara dan B kutub selatan atau sebaliknya.
Setelah kita dapat membuat magnet tentu saja ingin menyimpannya. Agar sifat kemagnetan sebuah magnet dapat tahan lama, maka dalam menyimpan magnet diperlukan angker (sepotong besi) yang dipasang pada kutub magnet. Pemasangan angker bertu- juan untuk mengarahkan magnet elementer hingga membentuk rantai tertutup. Untuk menyimpan dua buah magnet batang diperlukan dua angker yang dihubungkan dengan dua kutub magnet yang berlawanan. Jika berupa magnet U untuk menyimpan diperlukan satu angker yang dihubungkan pada kedua kutubnya. Kita sudah mengetahui benda magnetik dapat dijadikan magnet. Sebaliknya magnet juga dapat dihilangkan kemagnetannya. Bagaimana caranya? Sebuah magnet akan hilang sifat kemagnetannya jika magnet dipanaskan, dipukul-pukul, dan dialiri arus listrik bolak-balik. Magnet yang mengalami pemanasan dan pemukulan akan menyebabkan perubahan susunan magnet elementernya. Akibat pemanasan dan pemukulan magnet elementer menjadi tidak teratur dan tidak searah. Penggunaan arus AC menyebabkan arah arus listrik yang selalu berubah-ubah. Perubahan arah arus listrik memengaruhi letak dan arah magnet elementer. Apabila letak dan arah magnet elementer berubah, sifat kemagnetannya hilang.
1. Apakah yang terjadi pada besi dan baja apabila arah gosokan ujung magnet tetap arahnya bolak-balik ?
2. Mengapa jika kaca digosok dengan magnet tetap, berapapun lamanya gosokan kaca tidak dapat menjadi magnet?
3. Mengapa magnet yang dibakar akan hilang sifat kemagnetannya?
KUTUB MAGNET
Di awal bab ini kamu sudah mengenal istilah kutub magnet. Selanjutnya di
bagian ini kamu akan lebih memperdalam sifat-sifat kutub magnet. Jika
magnet batang ditaburi serbuk besi atau paku- paku kecil, sebagian besar
serbuk besi maupun paku akan melekat pada kedua ujung magnet. Bagian
kedua ujung magnet akan lebih banyak serbuk besi atau paku yang menempel
daripada di bagian tengahnya. Hal itu menunjukkan bahwa gaya tarik
magnet paling kuat terletak pada ujung-ujungnya. Ujung magnet yang
memiliki gaya tarik paling kuat itulah yang disebut kutub
magnet. Bagai- manakah menentukan jenis kutub magnet? Sebuah magnet
batang yang tergantung bebas dalam keadaan setimbang, ujung-ujungnya
akan menunjuk arah utara dan arah selatan bumi. Ujung magnet yang
menunjuk arah utara bumi disebut kutub utara magnet. Sebaliknya, ujung
magnet yang menunjuk arah selatan bumi disebut kutub selatan magnet.
Setiap magnet memiliki dua kutub, yaitu kutub utara dan kutub
selatan. Alat yang digunakan untuk menunjukkan arah utara bumi atau
geografis disebut kompas.
Kompas merupakan magnet jarum yang dapat bergerak bebas pada sebuah poros. Pada keadaan setimbang salah satu ujung magnet jarum menunjuk arah utara dan ujung lainnya menunjuk arah selatan. Kamu sudah mengetahui bahwa magnet mempunyai dua kutub, yaitu kutub utara dan kutub selatan. Apabila dua kutub magnet didekatkan akan saling mengadakan interaksi. Jenis interaksi bergantung jenis-jenis kutub yang berdekatan. Apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub utara magnet lain? Atau sebaliknya, apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub selatan magnet lain?
Kompas merupakan magnet jarum yang dapat bergerak bebas pada sebuah poros. Pada keadaan setimbang salah satu ujung magnet jarum menunjuk arah utara dan ujung lainnya menunjuk arah selatan. Kamu sudah mengetahui bahwa magnet mempunyai dua kutub, yaitu kutub utara dan kutub selatan. Apabila dua kutub magnet didekatkan akan saling mengadakan interaksi. Jenis interaksi bergantung jenis-jenis kutub yang berdekatan. Apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub utara magnet lain? Atau sebaliknya, apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub selatan magnet lain?
Untuk mengetahui interaksi antarkutub dua magnet, cobalah melakukan kegiatan berikut secara berkelompok. Sebelumnya, bentuklah satu kelompok yang terdiri 4 siswa; 2 laki-laki dan 2 perempuan.
Tujuan: Mengetahui interaksi antarkutub
Alat dan Bahan:
- Magnet batang alnico
- Benang
- Spidol
- Statif
- benang
- magnet
- magnet kertas
Cara Kerja:
1. Ikatlah sebuah magnet batang di tengah-tengahnya dan gantungkan pada statif.
2. Setelah dalam keadaan seimbang, dekati kutub magnet dengan kutub sejenis magnet yang lain.
3. Amatilah keadaan magnet.
4. Ulangi cara kerja nomor 2-3, tetapi menggunakan kutub magnet yang berlawanan jenis.
Pertanyaan:
1. Apa yang terjadi jika dua kutub sejenis berinteraksi atau berdekatan?
2. Apa yang terjadi jika dua kutub berlawanan jenis berinteraksi?
3. Nyatakan kesimpulan kelompokmu di buku kerjamu.
Kamu sudah melakukan kegiatan berupa menginteraksikan dua magnet;
jika kutubnya senama akan saling menolak tetapi jika kutubnya berbeda
akan saling menarik. Pada saat dua magnet terpisah jarak yang
jauh, belum terasa adanya gaya tarik atau gaya tolak. Makin dekat kedua
magnet, makin terasa kuat gaya tarik atau gaya tolaknya.
Jika di sekitar magnet batang diletakkan benda-benda mag- netik,
benda-benda itu akan ditarik oleh magnet. Makin dekat dengan magnet,
gaya tarik yang dialami benda makin kuat. Makin jauh dari magnet makin
kecil gaya tarik yang dialami benda. Ruang di sekitar magnet yang
masih terdapat pengaruh gaya tarik magnet disebut medan magnet.
Pada tempat tertentu benda tidak mendapat penga- ruh gaya tarik magnet.
Benda yang demikian dikatakan berada di luar medan magnet. Medan
magnet tidak dapat dilihat dengan mata. Namun, keberadaan dan
polanya dapat ditunjukkan.
Garis-garis yang menggambarkan pola medan magnet disebut garis-garis gaya magnet. Garis-garis gaya magnet tidak pernah berpotongan satu sama lainnya. Garis-garis gaya magnet keluar dari kutub utara, masuk (menuju) ke kutub selatan. Makin banyak jumlah garis-garis gaya magnet makin besar kuat medan magnet yang dihasilkan. Apapun bentuknya sebuah magnet memiliki medan magnet yang digambar berupa garis lengkung.
Garis-garis yang menggambarkan pola medan magnet disebut garis-garis gaya magnet. Garis-garis gaya magnet tidak pernah berpotongan satu sama lainnya. Garis-garis gaya magnet keluar dari kutub utara, masuk (menuju) ke kutub selatan. Makin banyak jumlah garis-garis gaya magnet makin besar kuat medan magnet yang dihasilkan. Apapun bentuknya sebuah magnet memiliki medan magnet yang digambar berupa garis lengkung.
Dua kutub magnet yang tidak sejenis saling berdekatan pola medan
magnetnya juga berupa garis lengkung yang keluar dari kutub utara
magnet menuju kutub selatan magnet. Bagaimanakah kerapatan pola medan
magnet dua kutub magnet yang makin berdekatan?
Pada dua kutub magnet yang tak sejenis, garis-garis gaya
magnetnya keluar dari kutub utara dan masuk ke kutub selatan
magnet lain. Itulah sebabnya dua kutub magnet yang tidak sejenis saling
tarik-menarik.
Pada dua kutub magnet yang sejenis, garis-garis gaya magnet yang keluar
dari kutub utara masing-masing cenderung saling menolak. Mengapa?
Karena arah garis gaya berlawanan, terjadilah tolak-menolak antara
garis-garis gaya yang keluar kedua kutub utara magnet. Hal itulah
yang menyebabkan dua kutub yang sejenis saling menolak.
Latihan !!!
1. Apakah perbedaan antara kutub utara dan kutub selatan sebuah magnet?
2. Sebutkan dua sifat-sifat kutub magnet yang saling berdekatan.
3. Apakah yang dimaksud medan magnet?
4. Bagaimanakah pengaruh jumlah garis gaya magnet terhadap kekuatan magnet?
KEMAGNETAN BUMI
1. Bumi Sebagai Magnet
Kamu sudah mengetahui sebuah magnet batang yang tergantung bebas akan menunjuk arah tertentu. Pada bagian ini, kamu akan mengetahui mengapa magnet bersikap seperti itu. Pada umumnya sebuah magnet terbuat dari bahan besi dan nikel. Keduanya memiliki sifat kemagnetan
karena tersusun oleh magnet- magnet elementer. Batuan-batuan
pembentuk bumi juga mengan- dung magnet elementer. Bumi
dipandang sebagai sebuah magnet batang yang besar yang membujur dari
utara ke selatan bumi. Magnet bumi memiliki dua kutub, yaitu kutub
utara dan selatan. Kutub utara magnet
bumi terletak di sekitar kutub selatan bumi. Adapun kutub selatan
magnet bumi terletak di sekitar kutub utara bumi. Magnet bumi
memiliki medan magnet yang dapat memengaruhi jarum kompas dan
magnet batang yang tergantung bebas. Medan magnet bumi digambarkan
dengan garis-garis leng- kung yang berasal dari kutub selatan bumi
menuju kutub utara bumi. Magnet bumi tidak tepat menunjuk arah
utara-selatan geografis. Penyimpangan magnet bumi ini akan
menghasilkan garis-garis gaya magnet bumi yang menyimpang terhadap
arah utara-selatan geografis. Adakah pengaruh penyimpangan magnet
bumi terhadap jarum kompas?
2. Deklinasi dan Inklinasi
Ambillah sebuah kompas dan letakkan di atas meja dengan penunjuk utara
(N) tepat menunjuk arah utara. Amatilah kutub utara jarum kompas.
Apakah kutub utara jarum kompas tepat menunjuk arah utara (N)? Berapakah
sudut yang dibentuk antara kutub utara jarum kompas dengan arah utara
(N)?
Jika kita perhatikan kutub utara jarum kompas dalam keadaan setimbang
tidak tepat menunjuk arah utara dengan tepat. Penyim- pangan jarum
kompas itu terjadi karena letak kutub-kutub magnet bumi tidak tepat
berada di kutub-kutub bumi, tetapi menyimpang terhadap letak kutub bumi.
Hal ini menyebabkan garis-garis gaya magnet bumi mengalami
penyimpangan terhadap arah utara-selatan bumi. Akibatnya penyimpangan
kutub utara jarum kompas akan membentuk sudut terhadap arah
utara-selatan bumi (geografis). Sudut yang dibentuk oleh kutub
utara jarum kompas dengan arah utara-selatan geografis disebut deklinasi
(Gambar 11.15). Pernahkah kamu memerhatikan mengapa kedudukan jarum
kompas tidak mendatar. Penyimpangan jarum kompas itu terjadi ka- rena
garis-garis gaya magnet bumi tidak sejajar dengan permukaan bumi (bidang
horizontal). Akibatnya, kutub utara jarum kompas me- nyimpang naik atau
turun terhadap permukaan bumi. Penyimpangan kutub utara jarum kompas
akan membentuk sudut terhadap bidang datar permukaan bumi. Sudut yang
dibentuk oleh kutub utara jarum kompas dengan bidang datar disebut inklinasi (Gambar 11.16). Alat yang digunakan untuk menentukan besar inklinasi disebut inklinator.
MEDAN MAGNET DI SEKITAR ARUS LISTRIK
Tujuan belajarmu adalah dapat:
menjelaskan sifat medan magnet di sekitar kawat berarus listrik.
Arah penyimpangan magnet jarum kompas ketika berada di sekitar arus listrik dapat diterang- kan sebagai berikut.
Anggaplah arus listrik terletak di antara telapak tangan kanan dan
magnet jarum kompas. Jika arus listrik searah dengan keempat
jari, kutub utara magnet jarum akan me- nyimpang sesuai ibu
jari. Cara penentuan arah sim- pangan magnet jarum kom- pas demikian
disebutkai- dah telapak tangan kanan.
Medan magnet di sekitar kawat berarus listrik ditemukan secara
tidak sengaja oleh Hans Christian Oersted (1770-1851), ke- tika akan
memberikan kuliah bagi mahasiswa. Oersted menemukan bahwa di sekitar
kawat berarus listrik magnet jarum kompas akan bergerak (menyimpang).
Penyimpangan magnet jarum kompas akan makin besar jika kuat arus
listrik yang mengalir melalui kawat diperbesar. Arah penyimpangan
jarum kompas bergantung arah arus listrik yang mengalir dalam kawat.
Gejala itu terjadi jika kawat dialiri arus listrik. Jika kawat tidak
dialiri arus listrik, medan magnet tidak terjadi sehingga magnet jarum
kompas tidak bereaksi.
Perubahan arah arus listrik ternyata juga memengaruhi
perubahan arah penyimpangan jarum kompas. Perubahan jarum kompas
menunjukkan perubahan arah medan magnet.
Bagaimanakah menentukan arah medan magnet di sekitar penghantar berarus listrik?
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub
selatan menuju kutub utara, kutub utara jarum kompas menyimpang
berlawanan dengan arah putaran jarum jam.
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub
utara menuju kutub selatan, kutub utara jarum kompas menyimpang searah
dengan arah putaran jarum jam.
1. Pola Medan Magnet di Sekitar Arus Listrik
Gejala penyimpangan magnet jarum di sekitar arus listrik membuktikan bahwa arus listrik dapat menghasilkan medan magnet.
Arah medan magnet yang ditimbulkan arus listrik dapat diterangkan
melalui aturan atau kaidah berikut. Anggaplah suatu peng- hantar berarus
listrik digenggam tangan kanan. Perhatikan Gambar
11.18. Jika arus listrik searah ibu jari, arah medan magnet yang timbul
searah keempat jari yang menggenggam. Kaidah yang demikian disebut
kaidah tangan kanan menggenggam. Tugas Individu !
Rancanglah suatu kegiatan untuk membuktikan adanya medan magnet di
sekitar penghantar berarus listrik. Peralatan yang tersedia
antara lain serbuk besi, penghantar, kertas, dan baterai. Gambarlah
sketsa model kegiatanmu.
2. Solenoida

Jika
solenoida dialiri arus listrik maka akan menghasilkan medan
magnet. Medan magnet yang dihasilkan solenoida berarus listrik
bergantung pada kuat arus listrik dan banyaknya kumparan. Garis-garis
gaya magnet pada solenoida merupakan gabungan dari garis-garis gaya
magnet dari kawat melingkar. Gabungan itu akan menghasilkan medan
magnet yang sama dengan medan magnet sebuah magnet batang
yang panjang. Kumparan seolah-olah mempunyai dua kutub, yaitu
ujung yang satu merupakan kutub utara dan ujung kumparan yang
lain merupakan kutub selatan.
Latihan !
1. Apakah pengaruh arah arus listrik terhadap arah medan magnet?
2. Bagaimanakah pola medan magnet dari kawat berarus listrik?
3. Di manakah titik yang memiliki medan magnet paling kuat pada kawat me lingkar berarus listrik?
4. Tentukan letak kutub utara dan selatan
ELEKTROMAGNET
Tujuan belajarmu adalah dapat:
menjelaskan cara kerja elektromagnet dan penerapannya dalam bebera- pa teknologi.
Masih ingatkah kamu cara membuat magnet menggunakan arus listrik? Di
bagian ini kamu akan lebih mendalami tentang magnet listrik tersebut.
Magnet listrik atau elektromagnet sangat erat hubungannya
dengan solenoida.
Medan magnet yang dihasilkan oleh solenoida berarus listrik tidak
terlalu kuat. Agar medan magnet yang dihasilkan solenoida berarus
listrik bertambah kuat, maka di dalamnya harus dimasukkan inti besi
lunak. Besi lunak merupakan besi yang tidak dapat dibuat menjadi magnet
tetap. Solenoida berarus listrik dan dilengkapi de- ngan besi lunak
itulah yang dikenal sebagai elektromagnet.
1. Faktor yang Memengaruhi Kekuatan Elektromagnet
Apakah yang memengaruhi besar medan magnet yang dihasilkan
elektromagnet? Sebuah elektromagnet terdiri atas tiga unsur penting,
yaitu jumlah lilitan, kuat arus, dan inti besi.
Makin banyak lilitan dan makin besar arus listrik yang mengalir, makin
besar medan magnet yang dihasilkan. Selain itu medan magnet yang
dihasilkan elektromagnet juga tergantung pada inti besi yang digunakan.
Makin besar (panjang) inti besi yang berada dalam solenoida, makin
besar medan magnet yang dihasilkan elektromagnet. Jadi kemagnetan
sebuah elektromagnet bergantung besar kuat arus yang mengalir,
jumlah lilitan, dan besar inti besi yang digunakan.
Elektromagnet menghasilkan medan magnet yang sama dengan medan magnet
sebuah magnet batang yang panjang. Elektromagnet juga mempunyai dua
kutub yaitu ujung yang satu merupakan kutub utara dan ujung kumparan
yang lain merupakan kutub selatan.
Dibandingkan magnet biasa, elektromagnet banyak mempu- nyai keunggulan.
Karena itulah elektromagnet banyak digunakan dalam kehidupan
sehari-hari. Beberapa keunggulan elektromagnet antara lain sebagai
berikut.
a. Kemagnetannya dapat diubah-ubah dari mulai yang kecil sampai yang
besar dengan cara mengubah salah satu atau ketiga dari kuat arus
listrik, jumlah lilitan dan ukuran inti besi.
b. Sifat kemagnetannya mudah ditimbulkan dan dihilangkan dengan cara
memutus dan menghubungkan arus listrik meng- gunakan sakelar.
c . Dapat dibuat berbagai bentuk dan ukuran sesuai dengan kebutuhan yang dikehendaki.
d. Letak kutubnya dapat diubah-ubah dengan cara mengubah arah arus listrik.
Kekuatan elektromagnet akan bertambah, jika:
a. arus yang melalui kumparan bertambah,
b. jumlah lilitan diperbanyak,
c. memperbesar/memperpanjang inti besi.
Latihan
1. Apakah yang dimaksud elektromagnet?
2. Sebutkan tiga cara memperbesar medan magnet yang dihasilkan elektromagnet.
2. Kegunaan Elektromagnet
Beberapa peralatan sehari-hari yang menggunakan elektromagnet antara lain seperti berikut.
a. Bel listrik
Bel listrik terdiri atas dua elektromagnet dengan setiap solenoida
dililitkan pada arah yang berlawanan (perhatikan Gambar11.21).
Apabila sakelar ditekan, arus listrik akan mengalir melalui solenoida.
Teras besi akan menjadi magnet dan menarik kepingan besi lentur dan
pengetuk akan memukul bel (lonceng) menghasilkan bunyi. Tarikan kepingan
besi lentur oleh elektromagnet akan me- misahkan titik sentuh dan
sekrup pengatur yang berfungsi sebagai interuptor. Arus listrik akan
putus dan teras besi hilang kemag- netannya. Kepingan besi lentur
akan kembali ke kedudukan semula. Teras besi akan menjadi magnet dan
menarik kepingan besi lentur dan pengetuk akan memukul bel
(lonceng) menghasilkan bunyi kembali. Proses ini berulang-ulang
sangat cepat dan bunyi lonceng terus terdengar.
b. Relai
Relai berfungsi sebagai sakelar untuk menghubungkan atau memutuskan
arus listrik yang besar pada rangkaian lain dengan menggunakan
arus listrik yang kecil. Ketika sakelar S ditutup arus listrik kecil
mengalir pada kumparan. Teras besi akan menjadi magnet
(elektromagnet) dan menarik kepingan besi lentur. Titik sentuh C
akan tertutup, menyebabkan rangkaian lain yang mem- bawa arus
besar akan tersambung. Apabila sakelar S dibuka, teras besi hilang
kemagnetannya, keping besi lentur kembali ke kedudukan semula. Titik
sentuh C terbuka dan rangkaian listrik lain terputus.
c. Telepon
Telepon terdiri dari dua bagian yaitu bagian pengirim
(mikrofon) dan bagian penerima (telepon). Prinsip kerja bagian
mikrofon adalah mengubah gelombang suara menjadi getaran- getaran
listrik. Pada bagian pengirim ketika seseorang berbicara akan
menggetarkan diafragma aluminium. Serbuk-serbuk karbon yang
terdapat pada mikrofon akan tertekan dan menyebabkan hambatan
serbuk karbon mengecil. Getaran yang berupa sinyal listrik akan
mengalir melalui rangkaian listrik.
Prinsip kerja bagian telepon adalah mengubah sinyal listrik menjadi
gelombang bunyi. Sinyal listrik yang dihasilkan mikrofon diterima oleh
pesawat telepon. Apabila sinyal listrik berubah-ubah mengalir pada
kumparan, teras besi akan menjadi elektromagnet yang kekuatannya
berubah-ubah (perhatikan Gambar 11.23). Dia- fragma besi lentur di
hadapan elektromagnet akan ditarik dengan gaya yang berubah-ubah.
Hal ini menyebabkan diafragma bergetar. Getaran diafragma memengaruhi
udara di hadapannya, sehingga udara akan dimampatkan dan
direnggangkan. Tekanan bunyi yang dihasilkan sesuai dengan tekanan bunyi
yang dikirim melalui mi- krofon.
d. Katrol Listrik
Elektromagnet yang besar digunakan untuk mengangkat sampah logam
yang tidak terpakai. Apabila arus dihidupkan katrol listrik akan menarik
sampah besi dan memindahkan ke tempat yang dikehendaki. Apabila arus
listrik dimatikan, sampah besi akan jatuh. Dengan cara ini sampah yang
berupa tembaga, aluminium, dan seng dapat dipisahkan dengan besi.
Kebaikan katrol listrik adalah:
a. mampu mengangkat sampah besi dalam jumlah besar
b. dapat mengangkat/memindahkan bongkahan besi yang tanpa rantai
c . membantu memisahkan antara logam feromagnetik dan bukan feromagnetik.
Latihan
1. Mengapa menambah jumlah lilitan dapat menghasilkan kemagnetan yang lebih besar?
2. Bagaimana cara penentuan elektromagnet?
GAYA LORENTZ
GAYA LORENTZ
Di depan telah dijelaskan bahwa kawat berarus listrik menimbulkan medan magnet. Apakah yang terjadi jika kawat berarus listrik berada dalam medan magnet tetap?
Interaksi medan magnet dari
kawat berarus dengan medan magnet tetap akan menghasilkan gaya
magnet. Pada peristiwa ini terdapat hubungan antara arus listrik, medan
magnet tetap, dan gaya magnet. Hubungan besaran-besaran itu
ditemukan oleh fisikawan Belanda, Hendrik Anton Lorentz (1853-1928).
Dalam penyelidikan- nya Lorentz menyimpulkan bahwa besar gaya yang
ditimbulkan berbanding lurus dengan kuat arus, kuat medan
magnet, panjang kawat dan sudut yang dibentuk arah arus listrik dengan
arah medan magnet. Untuk menghargai jasa penemuan H.A. Lorentz,
gaya tersebut disebut gaya Lorentz. Apabila arah arus listrik tegak
lurus dengan arah medan magnet, besar gaya Lorentz dirumuskan.
Dengan: F = B . I . l
F = gaya Lorentz satuan newton (N)
B = kuat medan magnet satuan tesla (T).
l = panjang kawat satuan meter (m)
I = kuat arus listrik satuan ampere (A)
Berdasarkan rumus di atas tampak bahwa apabila arah arus listrik tegak lurus dengan arah medan magnet,
besar gaya Lorentz bergantung pada panjang kawat, kuat arus listrik,
dan kuat medan magnet. Gaya Lorentz yang ditimbulkan makin besar, jika
panjang kawat, kuat arus listrik, dan kuat medan magnet makin besar.
Kawat panjangnya 2 m berada tegak lurus dalam medan magnet 20 T. Jika kuat arus listrik yang mengalir 400 mA, berapakah besar gaya Lorentz yang dialami kawat?
Penyelesaian:
Diketahui: l = 2 m
B = 20 T
I = 400 mA = 0,4 A
Ditanya: F = ... ?
Jawab: F = B x I x l
= 20 x 0,4 x 2
= 16 N
Arah gaya Lorentz bergantung pada arah arus listrik dan arah medan
magnet. Untuk menentukan arah gaya Lorentz digunakan kaidah atau
aturan tangan kanan. Caranya rentangkan ketiga jari yaitu ibu
jari, jari telunjuk, dan jari tengah sedemikian hingga membentuk sudut
90 derajat (saling tegak lurus). Jika ibu jari menunjukan arah arus
listrik (I) dan jari telunjuk menunjukkan arah medan magnet (B) maka arah gaya Lorentz searah jari tengah (F).
Dalam bentuk tiga dimensi, arah yang tegak lurus mendekati pembaca
diberi simbol. Adapun arah yang tegak lurus menjauhi pembaca diberi
simbol.
Gaya Lorentz yang ditimbulkan kawat berarus listrik dalam medan magnet dapat dimanfaatkan untuk membuat alat yang dapat mengubah energi listrik menjadi energi gerak. Alat yang menerapkan gaya Lorentz adalah motor listrik dan alat-alat ukur listrik. Motor listrik banyak dijumpai pada tape recorder, pompa air listrik, dan komputer. Adapun, contoh alat ukur listrik yaitu amperemeter, voltmeter, dan ohmmeter.
Gaya Lorentz yang ditimbulkan kawat berarus listrik dalam medan magnet dapat dimanfaatkan untuk membuat alat yang dapat mengubah energi listrik menjadi energi gerak. Alat yang menerapkan gaya Lorentz adalah motor listrik dan alat-alat ukur listrik. Motor listrik banyak dijumpai pada tape recorder, pompa air listrik, dan komputer. Adapun, contoh alat ukur listrik yaitu amperemeter, voltmeter, dan ohmmeter.
Navigation